
Chapter 7

Some Other Related Results

7.1 Tarski’s Undefinability of Truth

We show that the truth inside the standard model is not definable by an LA-formula in the
following sense:

Theorem 1.1: Tarski’s undefinability theorem

There is no LA-formula Truth. px0q such that for any closed LA-formula ω one has

N |ù ω !Ñ Truth. pxωyq .

Proof of Theorem 1.1:

Towards a contradiction, we assume there exists some formula Truth. px0q, and we use it to

construct the formula :̆Diag.Tr. px0q the following way:

:̆Diag.Tr. pxωyq :“ xωy P F✁x0 !free
"Ñ #Truth.

`
xωrrxωys{x0sy

˘
a.

We then consider the closed formula :̆Diag.Tr.
rrx

:̆Diag.Tr.ys{x0s

and discuss whether

(1) N |ù
:̆Diag.Tr.

rrx
:̆Diag.Tr.ys{x0s

or (2) N *
:̆Diag.Tr.

rrx
:̆Diag.Tr.ys{x0s

.

First, notice that since :̆Diag.Tr. px0q is some LA-formula whose only free variable is x0, we
have

N |ù x :̆Diag.Tr.y P F✁x0 !free
.

Therefore we also have
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(1) N |ù
:̆Diag.Tr.

rrx
:̆Diag.Tr.ys{x0s

ñ N |ù #Truth.

ˆ
x :̆Diag.Tr.

rrx
:̆Diag.Tr.ys{x0s

y
˙

(by definition of :̆Diag.Tr.)

ñ N *
:̆Diag.Tr.

rrx
:̆Diag.Tr.ys{x0s

(by definition of the Truth. predicate)

(2) N *
:̆Diag.Tr.

rrx
:̆Diag.Tr.ys{x0s

ñ N * Truth.

ˆ
x :̆Diag.Tr.

rrx
:̆Diag.Tr.ys{x0s

y
˙

(by definition of the Truth. predicate)

ñ N |ù #Truth.

ˆ
x :̆Diag.Tr.

rrx
:̆Diag.Tr.ys{x0s

y
˙

(by definition of the |ù relation)

ñ N |ù
:̆Diag.Tr.

rrx
:̆Diag.Tr.ys{x0s

(by definition of :̆Diag.Tr.)

We have obtained

N |ù
:̆Diag.Tr.

rrx
:̆Diag.Tr.ys{x0s

$ñ N *
:̆Diag.Tr.

rrx
:̆Diag.Tr.ys{x0s

which contradicts the existence of the formula Truth. px0q.

a
We recall that rxωys stands for the term

xωyhkkikkj
S . . . S 0.

7.2 Recursive Countable Models of Peano Arithmetic

Definition 2.1

A countable model of Peano is (up to isomorphism) some LA-structure of the form

M “ →N, 0M, SM, `
M, ¨

M↑

that satisfies M |ù Peano.
Such a model is recursive if the following functions are recursive.

˝ SM : N Ñ N ˝ `
M : N ˆ N Ñ N ˝ ¨

M : N ˆ N Ñ N
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As we will see, there are not too many recursive countable models of Peano, since the standard
model is the the only one up to isomorphism.

Theorem 2.1: Tennenbaum’s theorem

The only recursive countable model of Peano is the standard modela .

a
Up to isomorphism.

We start with a simple result known as Overspill, which claims that in any non-standard model,
if a formula holds true for every standard integer, then it holds true for some non-standard one
as well.

Lemma 2.1: Overspill

If ωpxq is any formula and M is a non-standard model of Peano such that, for all standard
integer n P N, M |ù ωpnq. Then there is a non-standard element e such that M |ù ωpeq.

Proof of Lemma 2.1:

Towards a contradiction, we assume that for every non-standard element e we have M *

ωpeq. The assumption that M |ù ωpnq holds for all n P N yields the following:

(1) M |ù ωp0q

(2) M |ù @x
´
ωpxq "Ñ ω

`
Sx

˘¯
.

By application of the instance of Peano’s induction axiom for ω we obtain M |ù @x ωpxq.

We then say that a set S % N is “ canonically coded ” in the model M if there exists some
element e P |M| such that

S “ tn P N | M |ù Dy ! pnq¨y “ eu

i.e,
S “ tn P N | M |ù ! pnq | eu.

Lemma 2.2

If ωApx, yq is any ”0
0-formula and M is any model M of Peano. Then for every element
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ε P |M| there exists ϑ P |M| such that for any n P N we have

M |ù

´
Dx & ε ωApx, nq !Ñ Dy ! pnq¨y “ ϑ

¯
.

This says that if a set S % N can be coded by ωApx, yq and some ε P |M| in the sense that

S “ tn P N | M |ù Dx & ε ωApx, nqu.

Then this same set S can be coded canonically:

S “ tn P N | M |ù ! pnq | ϑu.

Proof of Lemma 2.2:

For every n P N, we have

Peano $c @xε Dxϑ @u & n
´

Dx & xε ωApx, uq !Ñ Dy ! puq¨y “ xϑ

¯
.

Since M is a model of Peano, we also have for every n P N:

M |ù @xε Dxϑ @u & n
´

Dx & xε ωApx, uq !Ñ Dy ! puq¨y “ xϑ

¯
.

Applying Lemma 2.1 (Overspill) there exists some element e P |M| such that

M |ù @xε Dxϑ @u & e
´

Dx & xε ωApx, uq !Ñ Dy ! puq¨y “ xϑ

¯
.

Hence, for every ε P M, there exists ϑ P M a such that

M |ù @u & e
´

Dx & ε ωApx, uq !Ñ Dy ! puq¨y “ ϑ
¯
.

By Lemma 4.2, every model N of Rob. is a final extension of the standard model N. Hence,
for every n P N we have M |ù n & e. So, finally we obtain

M |ù

´
Dx & ε ωApx, nq !Ñ Dy ! pnq¨y “ ϑ

¯
.

We first recall that two sets A % N and B % N are recursively inseparable if and only if

˝ A X B “ and

˝ there is no recursive set S % N such that A % S % BA.
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Lemma 2.3

There are recursively enumerable sets A % N and B % N which are not recursively separable.

Proof of Lemma 2.3:

This result was proved in the exercices.

Claim 2.1

If ωpxq is any ”0
0-formula and M is any model M of Peano. Then

N |ù ω ùñ M |ù ω.

Proof of Claim 2.1:

This is an immediate consequence of Proposition 4.1 which states that for every closed
#0
1-formula ω one has

N |ù

´
ω !Ñ Dx1ωproofRob.

px1, xωyq
¯
.

Lemma 2.4

Let M be any non-standard model of Peano.

There exists S % N which is both canonically coded in M and non-recursive.

Proof of Lemma 2.4:

So, we consider two recursively inseparable sets A % N and B % N which are both recursively
enumerable, hence there exist #0

1-formulas Dy ϖApy, xq and Dy ϖBpy, xq that represent A
and B, respectivelya. i.e., for each integer n:

˝ if n P A, then Rob. $c Dy ϖApy, nq;

˝ if n R A, then Rob. $c #Dy ϖApy, nq;
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˝ if n P B, then Rob. $c Dy ϖBpy, nq;

˝ if n R B, then Rob. $c #Dy ϖBpy, nq.

Since A X B “ H, for every integer n we have

N |ù @yA & n @yB & n @x & n #
`
ϖApyA , xq ^ ϖBpyB , xq

˘
looooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooon

!0
0

.

Hence by Claim 2.1, for every non-standard model M and every standard integer n, we
have

M |ù @yA & n @yB & n @x & n #
`
ϖApyA , xq ^ ϖBpyB , xq

˘
.

By the Overspill Lemma, there exists e P |M| such that

M |ù @yA & e @yB & e @x & e #
`
ϖApyA , xq ^ ϖBpyB , xq

˘
.

Set S “ tn P N | M |ù Dy & e ϖApy, nqu. We have

˝ A % S since n P A ùñ N |ù ϖApk, nq (for some k P N) ùñ M |ù ϖApk, nq (by
Claim 2.1 again) ùñ M |ù Dy & e ϖApy, nq (because M |ù k & e).

˝ S X B “ H since n P B ùñ N |ù ϖBpk, nq (for some k P N) ùñ M |ù ϖBpk, nq

(by Claim 2.1 again) ùñ M |ù Dy & e ϖBpy, nq. So, M |ù #Dy & e ϖApy, nq. By
Lemma 2.2, there exists some ϑ P |M| such that

S “ tn P N | M |ù Dy ! pnq¨y “ ϑu

a
Where εApy, xq and εBpy, xq are both !

0
0-formulas.

Proof of Theorem 2.1:

We consider the non-recursive set obtained at the end of the proof of Lemma 2.4

S “ tn P N | M |ù Dy & e ϖApy, nqu

“ tn P N | M |ù Dy ! pnq¨y “ ϑu.

We are going to show that if `
M is recursive, then S is recursive too which will be a

contradiction.
For this purpose, we describe a deciding procedure for membership in S.
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For each n P N, we have

Peano $c @y ! pnq¨y “ y`y` . . . `yloooooomoooooon
! pnq times

,

and also
Peano $c @x @y

´
y ‰ 0 "Ñ Dd Dr & y x “ py¨dq`r

¯

So, in M, for each element ϑ we have:

M |ù ! pnq¨ϑ “ ϑ`ϑ` . . . `ϑlooooooomooooooon
! pnq times

,

and for each non-zero element ε:

M |ù Dd Dr & y ϑ “ pε¨dq`r

i.e., there are uniquea elements, a divisor ϱ and remainder ς & ε, such that ϑ “ pε¨
M ϱq`

M ς.
So, given any non-zero ϑ P |M|, any n P N, there exists some unique and any element
ε P |M|, the model M satisfies the following disjunction:

ϑ “ ε`ε` . . . `εlooooooomooooooon
! pnq

_ ϑ “ ε`ε` . . . `εlooooooomooooooon
! pnq

`1 _ . . . . . . _ ϑ “ ε`ε` . . . `εlooooooomooooooon
! pnq

` 1` . . . `1loooomoooon
! pnq´1

.

If we assume that `
M is recursive, then given any ε P |M| and any k & ! pnq, whether ϑ “

ε`ε` . . . `εlooooooomooooooon
! pnq

` 1` . . . `1loooomoooon
k

or not can be decided. So, by successively looking at all possible

ε (remember that since the domain of M is countable, it can be ordered as →εi{i P N↑), one
will end up with a solution of the form:

˝ either ϑ “ ε`ε` . . . `εlooooooomooooooon
! pnq

in which case we have n P S,

˝ or ϑ “ ε`ε` . . . `εlooooooomooooooon
! pnq

` 1` . . . `1loooomoooon
k

for some 0 & k & ! pnq in which case we have n R S.

This provides us with a decision procedure for membership in S, hence S is recursive, a
contradiction.

a
Because Peano proves that the divisor and the remainder of the Euclidean division are both unique.
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7.3 Gödel’s 1st Incompleteness Theorem is Provable in RCA0

Second order arithmetic is not a theory of second order logic, but rather a two-sorted first order
theory. This means that in the language there are two di!erent sorts of variables and terms: the
numeric terms and the set terms. With respect to the semantic, the numeric variables and the
set variables range on di!erent sets of objects: numeric variables vary over integers (whether
there are standard or non-standard); whereas set variables vary on sets of integers.

Definition 3.1: The language of second order arithmetic

The language of second order arithmetic LA2 is a two-sorted language: there are two kinds
of terms.

numeric terms

˝ x0, x1, . . . are countably numeric variables that are numeric terms,

˝ 0 is a numeric term,

˝ if t, s are numeric terms, then the following are numeric terms

‚ St ‚ t`s ‚ t¨s

set terms

˝ X0, X1, . . . are countably set variables that are set terms,

Definition 3.2: The formulas of second order arithmetic

˝ The atomic formulas are of the form

‚ t “ s ‚ t P X

for t, s any numeric terms and X any set terma.

˝ If ω, ϖ are formulas, and x is a numeric variable and X is a set variable, then the
following are formulas:
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‚ atomic formu-
las

‚ #ω

‚ pω ^ ϖq

‚ pω _ ϖq

‚ pω "Ñ ϖq

‚ pω !Ñ ϖq

‚ Dxω

‚ DXω

‚ @xω

‚ @Xω
a
Necessarily some set variable.

Definition 3.3: Semantic of second order arithmetic

An LA2-structure is of the form

M “ →M1, M2, 0
M, SM, `

M, ¨
M↑

such that

˝ M1 is a non empty set,

˝ M2 % PpM1q is a non empty set (in case of full second order arithmetic one has
exactly PpM1q “ M2)

˝ 0M
P M1

˝ SM : M1 Ñ M1

˝ `
M : M1 ˆ M1 Ñ M1

˝ ¨
M : M1 ˆ M1 Ñ M1

Given any LA2-formula ω and any LA2-structure M as above, the definition of the satis-
faction relation M |ù ω is as usual for first order logic, except that numeric variables vary
over M1 while set variables vary over M2.
In terms of the evaluation game EV pM, ωq, the rules become:
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if ω is who plays the game goes on with

atomic formula no one the game ends

Dx ϖ Verifier picks some a P M1 ϖra{xs

@x ϖ Falsifier picks some a P M1 ϖra{xs

DX ϖ Verifier picks some S P M2 ϖrS{Xs

@X ϖ Falsifier picks some S P M2 ϖrS{Xs

pω1 _ ω2q Verifier chooses ω1 or ω2 the chosen subformula

pω1 ^ ω2q Falsifier chooses ω1 or ω2 the chosen subformula

#ϖ Verifier and Falsifier switch roles ϖ

Except for the distinction between the two di!erent sorts of variables, proofs in second order
arithmetic behave as in first order logic.

Definition 3.4: Z2 : the theory of full second order arithmetic

The Theory Z2 of full second order arithmetic is composed of the following axioms:

˝ Rob.

˝ The second order induction scheme: for every formula ωpx, Xq where x and X may
occur freely,

@X
´`

ωp0{x, Xq ^ @xpωpx, Xq "Ñ ωpSx{x, Xqq
˘

"Ñ @x ωpx, Xq

¯

˝ The comprehension scheme: for every formula ωpxq where other variables may occur
freely, but not the variable X

DX@x
`
x P X !Ñ ωpxq

˘
.

Most proofs that one encounters in Analysis can be conducted within Z2 ` DC where DC

(Dependent Choice) is a weak form of the AC (Axiom of Choice). The proof of Gödel’s 1st

incompleteness theorem only requires a fragment of Z2 – i.e., a theory whose axioms are all
theorems of Z2 – known as RCA0.
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Definition 3.5: The theory RCA0

The Theory RCA0 is a fragment of the full second order theory of arithmetic composed of
the following axioms:

˝ Rob.`I#0
1

˝ The second order induction axiom

@X
´`

0 P X ^ @xpx P X "Ñ Sx P Xq
˘

"Ñ @x x P X
¯

˝ The (recursive) comprehension scheme for “”0
1 formulas ”:

given any #0
1-formula ω#0

1
pxq and any !0

1-formula ω!0
1
pxq

ˆ
@x

`
ω#0

1
pxq !Ñ ω!0

1
pxq

˘
"Ñ DX@x

`
x P X !Ñ ω#0

1
pxq

˘˙
.

The name RCA0 stands for “Recursive Comprehension Axiom for ”0
0-formulas ” because all

the sets of integers that RCA0 proves to exist are recursive.

In other words, RCA0 is too weak to prove the existence of non-recursive sets.

Proposition 3.1

Gödel’s 1st incompleteness theorem is provable inside RCA0.

7.4 Presburger Arithmetic

Gödel’s 1st incompleteness Theorem implies that the complete LA-theory1 of the standard model
→N, 0, S, `, ¨↑ is undecidable.

If we consider the first order language whose signature is L1

A “ t0, 1, `, ¨, &u, it follows from
Gödel’s 1st incompleteness Theorem, that the complete L1

A-theory of the standard model →N, 0, 1, `, ¨, &↑
is also undecidable.

But if we remove the multiplication function symbol ¨ from the language, then the complete theory
of the standard model →N, 0, 1, `, &↑ becomes decidable.

1
Where LA “ t0, S,`, ¨u.
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Definition 4.1: Presburger Arithmetic

Let L “ t0, 1, `, &u, where 0, 1 are constant symbols, ` is a binary function symbol, and
& is a binary relation symbol.

Presburger Arithmetic (Presb.) is the complete L-theory of the structure →Z, 0, 1, `, &↑.
i.e.,

Presb. “ tω closed L-formula | Z |ù ωu.

Theorem 4.1

Presburger Arithmetic is decidable.
i.e.,

The complete theory of the structure →Z, 0, 1, `, &↑ is decidable.

The original proof of this result — due to Presburger himself — relies on the method of quantifier
elimination which provides an algorithm that transforms any given formula into some quantifier
free equivalent formula from which is then easy to decide [45, 9].

An other approach — due to the Swiss mathematician Julius Richard Büchi — to deciding
Presburger arithmetic consists in constructing a finite-state automaton whose language mirror
all satisfying assignments of a given formula [5].

Adding multiplication to Presburger Arithmetic makes it undecidable as was shown by Alonzo
Church [7].

Theorem 4.2

The complete theory of the structure →Z, 0, 1, `, ¨, &↑ is undecidable.

As an immediate consequence we also have :

Corollary 4.1

The complete theory of the structure →Z, 0, 1, `, ¨↑ is undecidable.
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7.5 Real Closed Fields

Definition 5.1: Real Closed Fields

Let Lrcf “ t0, 1, `, ¨, &u, where 0, 1 are constant symbols, `, ¨ are a binary function symbols,
and & is a binary relation symbol. Let R “ →|R|, 0, 1, `, ¨, &↑ be any Lrcf -structure.

R is a real closed field if

→|R|, 0, 1, `, ¨, &↑ is elementary equivalent to →R, 0, 1, `, ¨, &↑ .

We recall that two structures are elementary equivalent if they satisfy the same closed formulas.
So, R is a real closed field if the complete Lrcf -theories of R and R are exactly the same.

One can also define real closed fields in some other ways. For instance, by saying that a real
closed field is any Lrcf-structure R “ →M, 0, 1, `, ¨, &↑ that satisfies both

(1) the field axioms:

˝ @x @y @z px`yq`z “ x`py`zq (associativity of addition)

˝ @x @y @z px¨yq¨z “ x¨py¨zq (associativity of multiplication)

˝ @x @y x`y “ x`y (commutativity of addition)

˝ @x @y x¨y “ x¨y (commutativity of multiplication)

˝ @x x`0 “ x (additive identity)

˝ @x x¨1 “ x (multiplicative identity)

˝ @x Dy x`y “ 0 (additive inverses)

˝ @x ‰ 0 Dy x¨y “ 1 (multiplicative inverses)

˝ @x @y @z x¨py`zq “ px¨yq`px¨zq (distributivity of multiplication over addition)

(2) and any of the following equivalent conditions:

˝ R is not algebraically closed, but its algebraic closure is a finite extension.

˝ R is not algebraically closed but the field extension Rp
?

´1q is algebraically closed.

˝ &
R is a total order on |R| making it an ordered field such that, in this ordering, every

positive element of R has a square root in R and any polynomial of odd degree with
coe”cients in R has at least one root in R.
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Theorem 5.1

Let Lrcf “ t0, 1, `, ¨, &u and R “ →|R|, 0, 1, `, ¨, &↑ be any real closed field.

The complete theory of R is decidable.

Alfred Tarski proved this important result by means of quantifier elimination methods [58].

This result is of course equivalent to the following one:

Theorem 5.2

Let Lrcf “ t0, 1, `, ¨, &u.

The complete theory of →R, 0, 1, `, ¨, &↑ is decidable.

An immediate consequence of Church’s undecidability of the complete theory of the structure
→Z, 0, 1, `, ¨, &↑ (Theorem 4.2) is the following:

Corollary 5.1

Let Lrcf “ t0, 1, `, ¨, &u and R “ →R, 0, 1, `, ¨, &↑.

˝ There is no Lrcf -formula ωZpxq such that for all real a,

R |ù ωZpaq $ñ a P Z.

˝ There is no Lrcf -formula ωNpxq such that for all real n,

R |ù ωNpnq $ñ n P N.
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Definition 5.2: Relativization

Let C be any class characterized by some formula ωCpxq. Given any formula φ, the formula
pφq

C is defined by induction on on the height of the formula φ by:

˝
`
Dx ϖ

˘C
:“ Dx

´
ωCpxq ^

`
ϖ

˘C¯

˝
`
@x ϖ

˘C
:“ @x

´
ωCpxq "Ñ

`
ϖ

˘C¯

˝
`
t “ t1

˘C
:“ t “ t1

˝
`
#ϖ

˘C
:“ #

`
ϖ

˘C

˝
`
ϖ0 ^ ϖ1

˘C
:“ pϖ0q

C
^ pϖ1q

C

˝
`
ϖ0 _ ϖ1

˘C
:“ pϖ0q

C
_ pϖ1q

C

˝
`
ϖ0 Ñ ϖ1

˘C
:“ pϖ0q

C
Ñ pϖ1q

C

˝
`
ϖ0 Ø ϖ1

˘C
:“ pϖ0q

C
Ø pϖ1q

C

Proof of Corollary 5.1:

˝ Assume there exists some formula ωZpxq such that for all real a,

R |ù ωZpaq $ñ a P Z,

then we could use ωZpxq to relativize every formula to Z, so that we would have for
any formula ϖ:

Z |ù ϖ $ñ R |ù
`
ϖ

˘Z
.

So the complete theory of the structure →Z, 0, 1, `, ¨, &↑ would be decidable, contradict-
ing Theorem 4.2

˝ Assume there exists some formula ωNpxq such that for all real a,

R |ù ωNpaq $ñ a P Z,

then we could use ωNpxq to relativize every formula to N, so that we would have for
any formula ϖ:

N |ù ϖ $ñ R |ù
`
ϖ

˘N
.

So the complete theory of the structure →N, 0, 1, `, ¨, &↑ would be decidable, contradict-
ing Theorem 4.2
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7.6 Hilbert’s 10th Problem

Hilbert’s 10th problem is the tenth of a list of 23 problems that David Hilbert posed in 1900.

The original formulation of Hilbert’s 10th problem was:

“Given a Diophantine equation with any number of unknown quantities and with
rational integral numerical coe”cients: to devise a process according to which it can
be determined in a finite number of operations whether the equation is solvable in
rational integers. ”

A Diophantine equation is a polynomial equation with natural coe”cients (in Z) and usually
several unknowns, such that the only solutions of interest are the integer ones (those where all
unknowns take values inside N).

The modern formulation of Hilbert’s 10th problem is whether one can decide if one or more
solutions exist given some Diophantine equation. In other words, does there exist an algorithm
to check whether any given Diophantine equation has a solution.

Hilbert’s 10th problem remained open for 70 years and was solved in 1970 [38, 46, 16, 19].
It received a negative answer known as Matiyasevich’s theorem or the MRDP theorem (Yuri
Matiyasevich, Julia Robinson, Martin Davis, Hilary Putnam).

Given a diophantine equation of the form P py1, . . . , yn, x1, . . . , xkq “ 0, one distinguishes, among
the variables x1, . . . , xk, y1, . . . , yn, between

˝ the unknowns x1, . . . , xk, and

˝ the parameters y1, . . . , yn.

Definition 6.1: Diophantine set

A Diophantine set S is any subset S % Nn (any n P N) such that there exists some
Diophantine equation P py1, . . . , yn, x1, . . . , xkq “ 0 that satisfies:

@y1 P N . . . @yn P N
´

py1, . . . , ynq P S !Ñ Dx1 P N . . . Dxk P N P py1, . . . , yn, x1, . . . , xkq “ 0
¯

Matiyasevich-Robinson-Davis-Putnam Theorem 6.1

Given any integer n and S % Nn,

S is a Diophantine set $ñ S is recursively enumerable.

For a complete proof of the Matiyasevich-Robinson-Davis-Putnam Theorem, see Matiyasevich’s
book: Hilbert’s tenth problem [39].
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