Chapter 7

Some Other Related Results

7.1 Tarski’s Undefinability of Truth

We show that the truth inside the standard model is not definable by an L 4-formula in the
following sense:

Theorem 1.1: Tarski’s undefinability theorem

There is no L a-formula Trun. (o) such that for any closed L g-formula ¢ one has
N ¢« Trun (¢').

Proof of Theorem E

Towards a contradiction, we assume there exists some formula Ty, (To), and we use it to

construct the formula D;ag,ﬁ_ (x0) the following way:

D;ag.ﬁ. ( ) = € ‘F ZO Ifree - _‘7;Uth ( [ ] )H
We then consider the closed formula D:ag,’ﬁ‘“ el and discuss whether
o
1) N =Dy 7. or 2) N Dy T, .
(1) N = Diag [l /o] (%) ] /o]

First, notice that since D;ag,ﬁ, (x0) is some L g-formula whose only free variable is xo, we

have

N ): € ‘F ZO Ifree”

Therefore we also have
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1 N E DigTr -
& = K| R o 1
= N ): _'7;uth. (I /D/:u//.7-7.‘

v

= N '7é Diag.ﬁ.

DE Toyma > (by definition of D;g,’ﬁ_)

(D T ol (by definition of the Ty, predicate)
iag. r.'|/®o

v

2 N'?é Dzaﬁ
(2) 9D T Vol

= N ¥ Tun ('/D,‘;,,/,T._ (by definition of the Trun. predicate)

[ Diag. Tr Vo] )
= N E —Tunm. ('P;;,_,/.'T,.,[“D.. T ) (by definition of the | relation)
= N D;a Tr o, by definition of D;a T
): 7 ”IDHH/. 7—/‘]/900] ( g )

We have obtained

N ): D;ag.’ﬁ”. ~— N bé D’;ag-’];

(1D, T, /o] WD, T, Vaol

which contradicts the existence of the formula Ty, (To).

’
“We recall that ["¢'| stands for the term S...S0.

7.2 Recursive Countable Models of Peano Arithmetic

Definition 2.1
A countable model of Peano is (up to isomorphism) some L 4-structure of the form
M = (N, 0M, SM +M M)

that satisfies M = Peano.
Such a model is recursive if the following functions are recursive.

o SM:N—-N o +M :NxN-—->N o M:NxN-—->N
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As we will see, there are not too many recursive countable models of Peano, since the standard
model is the the only one up to isomorphism.

Theorem 2.1: Tennenbaum’s theorem

The only recursive countable model of Peano is the standard model"] .

“Up to isomorphism.

We start with a simple result known as Overspill, which claims that in any non-standard model,

if a formula holds true for every standard integer, then it holds true for some non-standard one
as well.

Lemma 2.1: Overspill

If p(x) is any formula and M is a non-standard model of Peano such that, for all standard
integer n € N, M |= ¢(n). Then there is a non-standard element e such that M = ¢(e).

Proof of Lemma E

Towards a contradiction, we assume that for every non-standard element e we have M E
w(e). The assumption that M = p(n) holds for all n € N yields the following:

(1) M= ¢(0)
(2) M E= Vac(cp(w) — cp(Sx)).

By application of the instance of Peano’s induction axiom for ¢ we obtain M =V p(z).
O

We then say that a set S S N is “canonically coded” in the model M if there exists some
element e € | M| such that

S={neN|MkE Jyll(n)y=c¢}

S={neN|M II(n)|e}.

Lemma 2.2

If oa(x,y) is any Ag-formula and M is any model M of Peano. Then for every element
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B € | M| there exists a € | M| such that for any n € N we have
M = <E|33 < B pa(z,n) «— 3y Il(n)y= oz).

This says that if a set S € N can be coded by v a(x,y) and some B € |M| in the sense that
S={neN|ME Jz < palz,n)}
Then this same set S can be coded canonically:

S={neN|ME II(n)|a}.

Proof of Lemma @

For every n € N, we have
Peano . VxgIz,Vu <n (Elx <zg pa(z,u) «— Jy I (u)y= a:a>.

Since M is a model of Peano, we also have for every n € N:

M E VagIzaVu <n (337 <zg palzr,u) «— JyIl(u)y= ma).
Applying Lemma (Owverspill) there exists some element e € | M| such that

M= VegIz,Vu<e (Elac <zg palzr,u) «— Iy Il(u)y= l’a).
Hence, for every 8 € M, there exists a« € M a such that

ME YVu<e <3x < B palz,u) «— Fy I (u)y = a).

By Lemmal[4.2, every model N of Rob. is a final extension of the standard model N. Hence,
for every n € N we have M = n < e. So, finally we obtain

M = <3x<5g0A(x,n) «— Jy H(n)-yz@).

We first recall that two sets A € N and B € N are recursively inseparable if and only if
o An B = and

o there is no recursive set S < N such that A < S < BC.
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Lemma 2.3

There are recursively enumerable sets A € N and B € N which are not recursively separable.

Proof of Lemma E

This result was proved in the exercices. ]

Claim 2.1

If p(z) is any AY-formula and M is any model M of Peano. Then

NE ¢ = ME ¢

Proof of Claim E

This is an immediate consequence of Proposition which states that for every closed
Y9-formula ¢ one has

N ): (SO « Hxlsoproof»,zob_(wl’ r‘W:-I))'

Lemma 2.4

Let M be any non-standard model of Peano.

There exists S € N which is both canonically coded in M and non-recursive.

Proof of Lemma IE

So, we consider two recursively inseparable sets A € N and B < N which are both recursively
enumerable, hence there exist X9-formulas 3y ¥a(y,x) and Iy ¥p(y,z) that represent A
and B, respectivelf’} i.e., for each integer n:

o ifne A, then Rob. . Iy Ya(y,n);

o ifn¢ A, then Rob. . —3y va(y,n);
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o if n€ B, then Rob. . Jy ¥p(y,n);
o if n¢ B, then Rob. + —3y ¥p(y,n).
Since A n B = (J, for every integer n we have

Nk YyA <nVy, <nVr<n ﬁ(¢A(yA,x) A ¢B(y3,$)).

~"
0
AO

Hence by Claim for every non-standard model M and every standard integer n, we

have
M= Yy, <nVy, <nVz <n —=(Yay,,z) r ¥(ys,x)).

By the Owverspill Lemma, there exists e € | M| such that
M ): vyA < evyB <eVx <e ﬁ(T/JA(?JAaJU) A ¢B(y371‘))'
Set S={neN|ME Jy<era(y,n)}. We have

o AcC S sincene A= N Ya(k,n) (for some k e N) = M = ta(k,n) (by
Claim[2.1] again) = M = Jy < e Ya(y,n) (because M |= k <e).

o SnB = sincene B= N ¢g(k,n) (for some ke N) = M = ¢p(k,n)
(by Claim [2.1] again) = M = Jy < e ¢¥p(y,n). So, M = =3y < e Ya(y,n). By
Lemma there exists some o € |[M| such that

S={neN|M[E JyIl(n)y=a}

“Where ¢4 (y, z) and 5 (y, z) are both A§-formulas.

Proof of Theorem
We consider the non-recursive set obtained at the end of the proof of Lemma
S={neN|M Jy<ealy,n)}
={neN|ME JyIl(n)y=al.

We are going to show that if + is recursive, then S is recursive too which will be a
contradiction.
For this purpose, we describe a deciding procedure for membership in S.
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For each n € N, we have
Peano Yy I (n)y = y+y+...+y,
[ S —
1I (n) times

and also
Peano Yz Yy (y #0—03AdIr<y x= (y~d)+r)

So, in M, for each element o we have:
METI(n)a=ata+t... +a,
_
II (TL) times
and for each mon-zero element [3:

MEdIr<y a=(Bd)+r

i.e., there are um’qwﬂ elements, a divisory and remainder 6 < (3, such that o = (B-M )+ 4.
So, given any non-zero « € |M|, any n € N, there exists some unique and any element
B € | M|, the model M satisfies the following disjunction:

a=0+0+...+8 v a=p+p+...+8+1 v ... ... vV a=0+p+...+8+1+...+1.
II (n) II (n) II(n) IT(n)-1

If we assume that + is recursive, then given any 5 € (M| and any k < I (n), whether a =
B+B+...+8+1+...+1 or not can be decided. So, by successively looking at all possible
—_— —

I (n) F
B (remember that since the domain of M is countable, it can be ordered as (f;/i € N)), one
will end up with a solution of the form:
o either a = B+p[+ ...+ in which case we have n € S,
| —
IT (n)
o ora=p+p+...+B+1+...41 for some 0 < k < Il (n) in which case we haven ¢ S.
k
IT (n)

This provides us with a decision procedure for membership in S, hence S is recursive, a
contradiction.

O

“Because Peano proves that the divisor and the remainder of the Euclidean division are both unique.
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7.3 Godel’s 15t Incompleteness Theorem is Provable in RCA,

Second order arithmetic is not a theory of second order logic, but rather a two-sorted first order
theory. This means that in the language there are two different sorts of variables and terms: the
numeric terms and the set terms. With respect to the semantic, the numeric variables and the
set variables range on different sets of objects: numeric variables vary over integers (whether
there are standard or non-standard); whereas set variables vary on sets of integers.

Definition 3.1: The language of second order arithmetic

The language of second order arithmetic L 42 is a two-sorted language: there are two kinds
of terms.

numeric terms

o X, T1,... are countably numeric variables that are numeric terms,
o 0 is a numeric term,

o if t,s are numeric terms, then the following are numeric terms

e St e t+s e (s

set terms

o Xo,Xq,... are countably set variables that are set terms,

Definition 3.2: The formulas of second order arithmetic
o The atomic formulas are of the form
e l=s5 e teX

for t,s any numeric terms and X any set tern{’}

o If v, ¥ are formulas, and x is a numeric variable and X is a set variable, then the
following are formulas:
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e atomic formu- o (pAV) o (p 1) o Vzyp
las  (pv ) o dzyp
°* —p * (¢ — ) e 1Xgp * VX

“Necessarily some set variable.

Definition 3.3: Semantic of second order arithmetic

An L y2-structure is of the form

M = <M1aM2aOM75M7 +M’ M>
such that

o Mj is a non empty set,

O

My < P(My) is a non empty set (in case of full second order arithmetic one has
exactly P(My) = Ms)

OMGMl

O

o

SM My — M
o +M: My x My — M
O-MIMIXM1—>M1

Given any L g2-formula ¢ and any L g2-structure M as above, the definition of the satis-
faction relation M |= ¢ is as usual for first order logic, except that numeric variables vary
over My while set variables vary over Ms.

In terms of the evaluation game EV (M, ), the rules become:
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if o is who plays the game goes on with
atomic formula no one the game ends
dx ) Verifier picks some a € M, Yla/z]
Va1 Falsifier picks some a € M Vla/z]
1X ¥ Verifier picks some S € My Yrs/x
VX Falsifier picks some S € My Yrs/x]
(p1 Vv ¥2) Verifier chooses ¢1 or 2 the chosen subformula
(1 A ©2) Falsifier chooses @1 or @9 the chosen subformula
= Verifier and Falsifier switch roles P

Ezxcept for the distinction between the two different sorts of variables, proofs in second order

arithmetic behave as in first order logic.

Definition 3.4: Z5 : the theory of full second order arithmetic

The Theory Zo of full second order arithmetic is composed of the following axioms:

o Rob.
o The second order induction scheme: for every formula p(x,X) where x and X may

occur freely,

VX((@(()/Q:,X) A Va(p(z, X) — o(Sa/z, X)) —> Va cp(x,X))

o The comprehension scheme: for every formula p(x) where other variables may occur

freely, but not the variable X

XV (z € X <« ¢(x)).

Most proofs that one encounters in Analysis can be conducted within Zo + DC where DC
(Dependent Choice) is a weak form of the AC (Axiom of Choice). The proof of Gidel’s 1
incompleteness theorem only requires a fragment of Zo — i.e., a theory whose axioms are all

theorems of Zo — known as RCAy.
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Definition 3.5: The theory RCA,

The Theory RCAyg is a fragment of the full second order theory of arithmetic composed of
the following axioms:

o Rob.+1%Y

o The second order induction axiom

VX ((0€ X A Va(re X — Sze X)) — ¥z e X)

o The (recursive) comprehension scheme for “AY formulas ”:

given any X0 -formula ow(x) and any N9 -formula ()

(Vx(cpz(f(a:) — py(2)) — IXVz (z€ X «— cng(:z:))).

The name RCAq stands for “Recursive Comprehension Axiom for Ag-formulas 7 because all
the sets of integers that RCAg proves to exist are recursive.

In other words, RCAyg is too weak to prove the existence of non-recursive sets.
Proposition 3.1

Gadel’s 15 incompleteness theorem is provable inside RCAyg.

7.4 Presburger Arithmetic

Gadel’s 15 incompleteness Theorem implies that the complete EA—theor of the standard model
(N,0,S,+,) is undecidable.

If we consider the first order language whose signature is L'y = {0,1,+,-, <}, it follows from
Gadel’s 1°% incompleteness Theorem, that the complete L'y-theory of the standard model (N, 0,1, +, -, <)
1s also undecidable.

But if we remove the multiplication function symbol - from the language, then the complete theory
of the standard model (N,0, 1,4, <) becomes decidable.

"Where L4 = {0, S, +,-}.
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Definition 4.1: Presburger Arithmetic

Let £ ={0,1,+, <}, where 0,1 are constant symbols, + is a binary function symbol, and
< is a binary relation symbol.

Presburger Arithmetic (Presb.) is the complete L-theory of the structure (Z,0,1,+,<).
i.€.,

Presb. = {p closed L-formula | 7Z = ¢}.

Theorem 4.1

Presburger Arithmetic is decidable.

i.e.,

The complete theory of the structure (Z,0,1,+,<) is decidable.

The original proof of this result — due to Presburger himself — relies on the method of quantifier
elimination which provides an algorithm that transforms any given formula into some quantifier
free equivalent formula from which is then easy to decide [45,19].

An other approach — due to the Swiss mathematician Julius Richard Bilichi — to deciding
Presburger arithmetic consists in constructing a finite-state automaton whose language mirror
all satisfying assignments of a given formula [3].

Adding multiplication to Presburger Arithmetic makes it undecidable as was shown by Alonzo

Church [7].

Theorem 4.2

The complete theory of the structure (Z,0,1,+,-, <) is undecidable.

As an immediate consequence we also have :

Corollary 4.1

The complete theory of the structure (Z,0,1,+,-) is undecidable.
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7.5 Real Closed Fields

Definition 5.1: Real Closed Fields

Let Lyep={0,1,+,-, <}, where 0,1 are constant symbols, +,- are a binary function symbols,
and < is a binary relation symbol. Let R = (|R|,0,1, +,-, <) be any L -structure.

R is a real closed field if
(IR],0,1,+,+,<) is elementary equivalent to (R,0,1,+,,<).
We recall that two structures are elementary equivalent if they satisfy the same closed formulas.
So, R is a real closed field if the complete L,.f-theories of R and R are exactly the same.

One can also define real closed fields in some other ways. For instance, by saying that o real
closed field is any Lcf-structure R = (M,0,1,+,-, <) that satisfies both

(1) the field axioms:

o YaVyVz (z+y)+z = 2+ (y+2) (associativity of addition)
o VaVyVz (xy)z=x(y2) (associativity of multiplication)
o VaVy x+y = x+y (commutativity of addition)
o VaVy xy =xy (commutativity of multiplication)
oVxz+0 =2 (additive identity)
oVraxl=ux (multiplicative identity)
o Vxdy z+y =0 (additive inverses)
oVr#03yxzy=1 (multiplicative inverses)
o VaxVyVz z-(y+2) = (z-y)+(z2) (distributivity of multiplication over addition)

(2) and any of the following equivalent conditions:

o R is not algebraically closed, but its algebraic closure is a finite extension.
o R is not algebraically closed but the field extension R(v/—1) is algebraically closed.

o <® is a total order on |R| making it an ordered field such that, in this ordering, every
positive element of R has a square root in R and any polynomial of odd degree with
coefficients in R has at least one root in R.
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Theorem 5.1

Let Lyep=1{0,1,+,-,<} and R = (|R|,0,1,+,, <) be any real closed field.

The complete theory of R is decidable.

Alfred Tarski proved this important result by means of quantifier elimination methods [58].

This result is of course equivalent to the following one:
Theorem 5.2

Let Loep={0,1,+,-,<}.

The complete theory of (R,0,1,+,-, <) is decidable.

An immediate consequence of Church’s undecidability of the complete theory of the structure

(2,0,1,+,-,<) (Theorem is the following:
Corollary 5.1

Let Lyep={0,1,+,-,<} and R = (R,0,1,+,-,<).
o There is no Lycf-formula pz(x) such that for all real a,

RE pz(a) < acZ.

o There is no Lycf-formula pn(x) such that for all real n,

R E¢n(n) < nelN.
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Definition 5.2: Relativization

Let C be any class characterized by some formula pc(x). Given any formula 6, the formula
(H)C 1s defined by induction on on the height of the formula 6 by:

o (304)% =3 (pcl@) A (8)°) o (Yo A1) = (o) A (1)°
o (vau)® = va(pole) — (1)) o (Yo v ) i= (o) v (11)°
o (t=t)C =t =+ o (o — o) 1= (¥0)° — (¥1)°
o (=)€ = —()° o (o 1) i= (o) o (¥1)C

Proof of Corollary E

o Assume there exists some formula pz(x) such that for all real a,
R E ¢z(a) < a€Z,

then we could use pz(x) to relativize every formula to Z, so that we would have for
any formula :

Zhv — RE ()™

So the complete theory of the structure (Z,0,1,+, -, <) would be decidable, contradict-
ing Theorem /.2

o Assume there exists some formula on(x) such that for all real a,
R E¢n(a) < a€Z,

then we could use () to relativize every formula to N, so that we would have for
any formula ¢:

N
NE¢ < RE(v) .
So the complete theory of the structure (N, 0,1, +,-, <) would be decidable, contradict-

ing Theorem
O
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7.6 Hilbert’s 10" Problem

Hilbert’s 10" problem is the tenth of a list of 23 problems that David Hilbert posed in 1900.
The original formulation of Hilbert’s 10" problem was:

“Given a Diophantine equation with any number of unknown quantities and with
rational integral numerical coefficients: to devise a process according to which it can
be determined in a finite number of operations whether the equation is solvable in
rational integers. ”

A Diophantine equation is a polynomial equation with natural coefficients (in Z) and usually
several unknowns, such that the only solutions of interest are the integer ones (those where all
unknowns take values inside N).

The modern formulation of Hilbert’s 10" problem is whether one can decide if one or more
solutions exist given some Diophantine equation. In other words, does there exist an algorithm
to check whether any given Diophantine equation has a solution.

Hilbert’s 10™ problem remained open for 70 years and was solved in 1970 [38, [46, |16, [19].
It received a negative answer known as Matiyasevich’s theorem or the MRDP theorem (Yuri
Matiyasevich, Julia Robinson, Martin Davis, Hilary Putnam).

Given a diophantine equation of the form P(y1,...,Yn,21,--.,xk) = 0, one distinguishes, among
the variables x1,...,Tk, Y1, .., Yn, between

o the unknowns x1,...,Ty, and

o the parameters yi,...,Yn-

Definition 6.1: Diophantine set

A Diophantine set S is any subset S < N" (any n € N) such that there exists some
Diophantine equation P(y1,...,Yn,T1,--.,xk) = 0 that satisfies:

VyleN...VyneN((yl,...,yn)eS «— ElfzrleN...EI:ckeNP(yl,...,yn,xl,...,a}k)=0)

Matiyasevich-Robinson-Davis-Putnam Theorem 6.1
Given any integer n and S € N,

S is a Diophantine set <= S is recursively enumerable.

For a complete proof of the Matiyasevich-Robinson-Davis-Putnam Theorem, see Matiyasevich’s
book: Hilbert’s tenth problem [39].
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