Chapter 7

Some Other Related Results

7.1 Tarski's Undefinability of Truth

We show that the truth inside the standard model is not definable by an $\mathcal{L}_{\mathcal{A}}$ -formula in the following sense:

Theorem 1.1: Tarski's undefinability theorem

There is no $\mathcal{L}_{\mathcal{A}}$ -formula $\mathcal{T}_{ruth.}(x_0)$ such that for any closed $\mathcal{L}_{\mathcal{A}}$ -formula φ one has

$$\mathbb{N} \models \varphi \longleftrightarrow \mathcal{T}_{ruth.}(\lceil \varphi \rceil).$$

Proof of Theorem 1.1:

Towards a contradiction, we assume there exists some formula $\mathcal{T}_{ruth.}(x_0)$, and we use it to construct the formula $\mathcal{D}_{iag.}^{"}\mathcal{T}_{r.}(x_0)$ the following way:

$$\mathcal{D}_{iag.}^{\ddot{\circ}}\mathcal{T}_{r.}\left(\lceil\varphi\rceil\right) := \lceil\varphi\rceil \in \mathcal{F}_{\checkmark x_0 \mid free} \longrightarrow \neg \mathcal{T}_{ruth.}\left(\lceil\varphi_{\lceil\lceil\varphi\rceil/x_0\rceil}\rceil\right)^{a}$$

We then consider the closed formula $\mathcal{D}_{iag.}^{\ddot{\circ}}\mathcal{T}_{r.}^{\ddot{\circ}}\mathcal{T}_{r.}^{\ddot{\circ}}\mathcal{T}_{r.}^{\ddot{\circ}}\mathcal{T}_{x_0}$ and discuss whether

$$(1) \mathbb{N} \models \mathcal{D}_{iag.}^{\ddot{\circ}} \mathcal{T}_{r.}_{[[r\mathcal{D}_{iag.}^{\ddot{\circ}} \mathcal{T}_{r.}]/x_{0}]} \qquad or \qquad (2) \mathbb{N} \not\models \mathcal{D}_{iag.}^{\ddot{\circ}} \mathcal{T}_{r.}_{[[r\mathcal{D}_{iag.}^{\ddot{\circ}} \mathcal{T}_{r.}]/x_{0}]}.$$

First, notice that since $\mathcal{D}_{iag.}^{"}\mathcal{T}_{r.}(x_0)$ is some $\mathcal{L}_{\mathcal{A}}$ -formula whose only free variable is x_0 , we have

$$\mathbb{N} \models \lceil \mathcal{D}_{iag}^{\circ} \mathcal{T}_{r} \rceil \in \mathcal{F}_{\checkmark x_0} \mid_{free}.$$

Therefore we also have

$$(1) \qquad \mathbb{N} \ \models \ \mathcal{D}_{iag.}^{\ddot{\upsilon}} \mathcal{T}_{r.}_{[[r'\mathcal{D}_{iag.}^{\ddot{\upsilon}} \mathcal{T}_{r.}^{\ddot{\upsilon}}]/x_{0}]}$$

$$\Rightarrow \ \mathbb{N} \ \models \ \neg \mathcal{T}_{ruth.} \left({}^{r}\mathcal{D}_{iag.}^{\ddot{\upsilon}} \mathcal{T}_{r.}_{[[r'\mathcal{D}_{iag.}^{\ddot{\upsilon}} \mathcal{T}_{r.}^{\ddot{\upsilon}}]/x_{0}]} \right) \qquad (by \ definition \ of \ \mathcal{D}_{iag.}^{\ddot{\upsilon}} \mathcal{T}_{r.})$$

$$\Rightarrow \ \mathbb{N} \ \not\models \ \mathcal{D}_{iag.}^{\ddot{\upsilon}} \mathcal{T}_{r.}_{[[r'\mathcal{D}_{iag.}^{\ddot{\upsilon}} \mathcal{T}_{r.}^{\ddot{\upsilon}}]/x_{0}]} \qquad (by \ definition \ of \ the \ \mathcal{T}_{ruth.} \ predicate)$$

$$(2) \qquad \mathbb{N} \ \not\models \ \mathcal{D}_{iag}^{\overset{\circ}{\cup}} \mathcal{T}_{r.} = 0$$

$$\Rightarrow \mathbb{N} \ \not\models \ \mathcal{T}_{ruth.} \left(\mathcal{D}_{iag.}^{\overset{\circ}{\cup}} \mathcal{T}_{r.} = 0 \right)$$

$$\Rightarrow \mathbb{N} \ \not\models \ \mathcal{T}_{ruth.} \left(\mathcal{D}_{iag.}^{\overset{\circ}{\cup}} \mathcal{T}_{r.} = 0 \right)$$

$$\Rightarrow \mathbb{N} \ \not\models \ \mathcal{T}_{ruth.} \left(\mathcal{D}_{iag.}^{\overset{\circ}{\cup}} \mathcal{T}_{r.} = 0 \right)$$

$$\Rightarrow \mathbb{N} \ \not\models \ \mathcal{D}_{iag.}^{\overset{\circ}{\cup}} \mathcal{T}_{r.} = 0$$

$$\Rightarrow \mathbb{N} \ \not\models \ \mathcal{D}_{iag.}^{\overset{\circ}{\cup}} \mathcal{T}_{r.} = 0$$

$$\Rightarrow \mathbb{N} \ \not\models \ \mathcal{D}_{iag.}^{\overset{\circ}{\cup}} \mathcal{T}_{r.} = 0$$

$$\Rightarrow \mathbb{N} \ \not\models \ \mathcal{D}_{iag.}^{\overset{\circ}{\cup}} \mathcal{T}_{r.} = 0$$

$$\Rightarrow \mathbb{N} \ \not\models \ \mathcal{D}_{iag.}^{\overset{\circ}{\cup}} \mathcal{T}_{r.} = 0$$

$$\Rightarrow \mathbb{N} \ \not\models \ \mathcal{D}_{iag.}^{\overset{\circ}{\cup}} \mathcal{T}_{r.} = 0$$

$$\Rightarrow \mathbb{N} \ \not\models \ \mathcal{D}_{iag.}^{\overset{\circ}{\cup}} \mathcal{T}_{r.} = 0$$

$$\Rightarrow \mathbb{N} \ \not\models \ \mathcal{D}_{iag.}^{\overset{\circ}{\cup}} \mathcal{T}_{r.} = 0$$

$$\Rightarrow \mathbb{N} \ \not\models \ \mathcal{D}_{iag.}^{\overset{\circ}{\cup}} \mathcal{T}_{r.} = 0$$

$$\Rightarrow \mathbb{N} \ \not\models \ \mathcal{D}_{iag.}^{\overset{\circ}{\cup}} \mathcal{T}_{r.} = 0$$

$$\Rightarrow \mathbb{N} \ \not\models \ \mathcal{D}_{iag.}^{\overset{\circ}{\cup}} \mathcal{T}_{r.} = 0$$

$$\Rightarrow \mathbb{N} \ \not\models \ \mathcal{D}_{iag.}^{\overset{\circ}{\cup}} \mathcal{T}_{r.} = 0$$

$$\Rightarrow \mathbb{N} \ \not\models \ \mathcal{D}_{iag.}^{\overset{\circ}{\cup}} \mathcal{T}_{r.} = 0$$

$$\Rightarrow \mathbb{N} \ \not\models \ \mathcal{D}_{iag.}^{\overset{\circ}{\cup}} \mathcal{T}_{r.} = 0$$

$$\Rightarrow \mathbb{N} \ \not\models \ \mathcal{D}_{iag.}^{\overset{\circ}{\cup}} \mathcal{T}_{r.} = 0$$

$$\Rightarrow \mathbb{N} \ \not\models \ \mathcal{D}_{iag.}^{\overset{\circ}{\cup}} \mathcal{T}_{r.} = 0$$

$$\Rightarrow \mathbb{N} \ \not\models \ \mathcal{D}_{iag.}^{\overset{\circ}{\cup}} \mathcal{T}_{r.} = 0$$

We have obtained

$$\mathbb{N} \models \mathcal{D}_{iag.}^{\ddot{\ddot{\upsilon}}} \mathcal{T}_{r.}_{[[\mathring{r}\mathcal{D}_{iag.}^{\ddot{\upsilon}}\mathcal{T}_{r.}]/x_{0}]} \iff \mathbb{N} \not\models \mathcal{D}_{iag.}^{\ddot{\ddot{\upsilon}}} \mathcal{T}_{r.}_{[[\mathring{r}\mathcal{D}_{iag.}^{\ddot{\upsilon}}\mathcal{T}_{r.}]/x_{0}]}$$

which contradicts the existence of the formula $\mathcal{T}_{ruth.}(x_0)$.

^aWe recall that $\lceil \varphi \rceil$ stands for the term $S \dots S 0$.

7.2 Recursive Countable Models of Peano Arithmetic

Definition 2.1

A countable model of Peano is (up to isomorphism) some $\mathcal{L}_{\mathcal{A}}$ -structure of the form

$$\mathcal{M} = \langle \mathbb{N}, 0^{\mathcal{M}}, S^{\mathcal{M}}, +^{\mathcal{M}}, \cdot^{\mathcal{M}} \rangle$$

that satisfies $\mathcal{M} \models \mathcal{P}eano$.

Such a model is recursive if the following functions are recursive.

$$\circ \ \ \stackrel{\mathcal{S}^{\mathcal{M}}}{\cdot} \ \mathbb{N} \to \mathbb{N} \qquad \qquad \circ \ \ \stackrel{+^{\mathcal{M}}}{\cdot} \ \mathbb{N} \times \mathbb{N} \to \mathbb{N} \qquad \qquad \circ \ \ \stackrel{\mathcal{M}}{\cdot} \ \mathbb{N} \times \mathbb{N} \to \mathbb{N}$$

As we will see, there are not too many recursive countable models of Peano, since the standard model is the the only one up to isomorphism.

Theorem 2.1: Tennenbaum's theorem

The only recursive countable model of \mathcal{P} eano is the standard mode \boxed{a} .

 $^{a}\mathrm{Up}$ to isomorphism.

We start with a simple result known as Overspill, which claims that in any non-standard model, if a formula holds true for every standard integer, then it holds true for some non-standard one as well.

Lemma 2.1: Overspill

If $\varphi(x)$ is any formula and \mathcal{M} is a non-standard model of Peano such that, for all standard integer $n \in \mathbb{N}$, $\mathcal{M} \models \varphi(n)$. Then there is a non-standard element e such that $\mathcal{M} \models \varphi(e)$.

Proof of Lemma 2.1:

Towards a contradiction, we assume that for every non-standard element e we have $\mathcal{M} \not\models \varphi(e)$. The assumption that $\mathcal{M} \models \varphi(n)$ holds for all $n \in \mathbb{N}$ yields the following:

(1)
$$\mathcal{M} \models \varphi(0)$$

(2)
$$\mathcal{M} \models \forall x \Big(\varphi(x) \longrightarrow \varphi(\underline{S}x) \Big).$$

By application of the instance of Peano's induction axiom for φ we obtain $\mathcal{M} \models \forall x \ \varphi(x)$.

We then say that a set $S \subseteq \mathbb{N}$ is "canonically coded" in the model \mathcal{M} if there exists some element $e \in |\mathcal{M}|$ such that

$$S = \{ n \in \mathbb{N} \mid \mathcal{M} \models \exists y \ \Pi(n) \cdot y = e \}$$

i.e.

$$S = \{ n \in \mathbb{N} \mid \mathcal{M} \models \Pi(n) \mid e \}.$$

Lemma 2.2

If $\varphi_A(x,y)$ is any Δ_0^0 -formula and \mathcal{M} is any model \mathcal{M} of Peano. Then for every element

 $\beta \in |\mathcal{M}|$ there exists $\alpha \in |\mathcal{M}|$ such that for any $n \in \mathbb{N}$ we have

$$\mathcal{M} \models \left(\exists x < \beta \ \varphi_A(x, n) \longleftrightarrow \exists y \ \Pi(n) \cdot y = \alpha\right).$$

This says that if a set $S \subseteq \mathbb{N}$ can be coded by $\varphi_A(x,y)$ and some $\beta \in |\mathcal{M}|$ in the sense that

$$S = \{ n \in \mathbb{N} \mid \mathcal{M} \models \exists x < \beta \ \varphi_A(x, n) \}.$$

Then this same set S can be coded canonically:

$$S = \{ n \in \mathbb{N} \mid \mathcal{M} \models \Pi(n) \mid \alpha \}.$$

Proof of Lemma 2.2:

For every $n \in \mathbb{N}$, we have

$$\mathcal{P}eano \vdash_{c} \forall x_{\beta} \exists x_{\alpha} \forall u < n \ \Big(\exists x < x_{\beta} \ \varphi_{A}(x, u) \iff \exists y \ \Pi(u) \cdot y = x_{\alpha}\Big).$$

Since \mathcal{M} is a model of $\mathcal{P}eano$, we also have for every $n \in \mathbb{N}$:

$$\mathcal{M} \models \forall x_{\beta} \exists x_{\alpha} \forall u < \mathbf{n} \ \left(\exists x < x_{\beta} \ \varphi_{A}(x, u) \longleftrightarrow \exists y \ \Pi(u) \cdot y = x_{\alpha} \right).$$

Applying Lemma 2.1 (Overspill) there exists some element $e \in |\mathcal{M}|$ such that

$$\mathcal{M} \models \forall x_{\beta} \exists x_{\alpha} \forall u < e \ \Big(\exists x < x_{\beta} \ \varphi_{A}(x, u) \iff \exists y \ \Pi(u) \cdot y = x_{\alpha}\Big).$$

Hence, for every $\beta \in \mathcal{M}$, there exists $\alpha \in \mathcal{M}$ a such that

$$\mathcal{M} \models \forall u < e \ \Big(\exists x < \beta \ \varphi_A(x, u) \ \longleftrightarrow \ \exists y \ \Pi(u) \cdot y = \alpha\Big).$$

By Lemma 4.2, every model \mathbb{N} of \mathbb{R} ob. is a final extension of the standard model \mathbb{N} . Hence, for every $n \in \mathbb{N}$ we have $\mathcal{M} \models n < e$. So, finally we obtain

$$\mathcal{M} \models \left(\exists x < \beta \ \varphi_A(x, n) \iff \exists y \ \Pi(n) \cdot y = \alpha\right).$$

We first recall that two sets $A \subseteq \mathbb{N}$ and $B \subseteq \mathbb{N}$ are recursively inseparable if and only if

- $\circ A \cap B = and$
- \circ there is no recursive set $S \subseteq \mathbb{N}$ such that $A \subseteq S \subseteq B^{\complement}$.

Lemma 2.3

There are recursively enumerable sets $A \subseteq \mathbb{N}$ and $B \subseteq \mathbb{N}$ which are not recursively separable.

Proof of Lemma 2.3:

This result was proved in the exercices.

Claim 2.1

If $\varphi(x)$ is any Δ_0^0 -formula and \mathcal{M} is any model \mathcal{M} of Peano. Then

$$\mathbb{N} \models \varphi \implies \mathcal{M} \models \varphi.$$

Proof of Claim 2.1:

This is an immediate consequence of Proposition 4.1 which states that for every closed Σ_1^0 -formula φ one has

$$\mathbb{N} \models \left(\varphi \longleftrightarrow \exists x_1 \varphi_{proof_{\mathcal{R}ob.}}(x_1, \lceil \varphi \rceil) \right).$$

Lemma 2.4

Let \mathcal{M} be any non-standard model of $\mathcal{P}eano$.

There exists $S \subseteq \mathbb{N}$ which is both canonically coded in \mathcal{M} and non-recursive.

Proof of Lemma 2.4:

So, we consider two recursively inseparable sets $A \subseteq \mathbb{N}$ and $B \subseteq \mathbb{N}$ which are both recursively enumerable, hence there exist Σ_1^0 -formulas $\exists y \ \psi_A(y,x)$ and $\exists y \ \psi_B(y,x)$ that represent A and B, respectively a. i.e., for each integer n:

- \circ if $n \in A$, then $\mathcal{R}ob$. $\vdash_c \exists y \ \psi_A(y, n)$;
- \circ if $n \notin A$, then $\mathcal{R}ob$. $\vdash_c \neg \exists y \ \psi_A(y, n)$;

- \circ if $n \in B$, then $\mathcal{R}ob$. $\vdash_c \exists y \ \psi_B(y, n)$;
- \circ if $n \notin B$, then $\mathcal{R}ob$. $\vdash_{c} \neg \exists y \ \psi_{B}(y, n)$.

Since $A \cap B = \emptyset$, for every integer n we have

$$\mathbb{N} \models \underbrace{\forall y_{\scriptscriptstyle A} < n \, \forall y_{\scriptscriptstyle B} < n \, \forall x < n \, \neg \big(\psi_{\scriptscriptstyle A}(y_{\scriptscriptstyle A}, x) \, \wedge \, \psi_{\scriptscriptstyle B}(y_{\scriptscriptstyle B}, x) \big)}_{\Delta^0_0}.$$

Hence by Claim $\boxed{2.1}$, for every non-standard model \mathcal{M} and every standard integer n, we have

$$\mathcal{M} \models \forall y_A < n \, \forall y_B < n \, \forall x < n \, \neg \big(\psi_A(y_A, x) \, \land \, \psi_B(y_B, x) \big).$$

By the Overspill Lemma, there exists $e \in |\mathcal{M}|$ such that

$$\mathcal{M} \models \ \forall y_{\scriptscriptstyle A} < e \, \forall y_{\scriptscriptstyle B} < e \, \forall x < e \, \neg \big(\psi_{\scriptscriptstyle A}(y_{\scriptscriptstyle A}, x) \ \land \ \psi_{\scriptscriptstyle B}(y_{\scriptscriptstyle B}, x) \big).$$

Set $S = \{n \in \mathbb{N} \mid \mathcal{M} \models \exists y < e \ \psi_A(y, n)\}$. We have

- $\circ A \subseteq S \text{ since } n \in A \Longrightarrow \mathbb{N} \models \psi_A(k,n) \text{ (for some } k \in \mathbb{N}) \Longrightarrow \mathcal{M} \models \psi_A(k,n) \text{ (by } Claim \ 2.1] again) \Longrightarrow \mathcal{M} \models \exists y < e \ \psi_A(y,n) \text{ (because } \mathcal{M} \models k < e).$
- \circ $S \cap B = \emptyset$ since $n \in B \Longrightarrow \mathbb{N} \models \psi_B(k,n)$ (for some $k \in \mathbb{N}$) $\Longrightarrow \mathcal{M} \models \psi_B(k,n)$ (by Claim 2.1 again) $\Longrightarrow \mathcal{M} \models \exists y < e \ \psi_B(y,n)$. So, $\mathcal{M} \models \neg \exists y < e \ \psi_A(y,n)$. By Lemma 2.2, there exists some $\alpha \in |\mathcal{M}|$ such that

$$S = \{ n \in \mathbb{N} \mid \mathcal{M} \models \exists y \; \Pi(\mathbf{n}) \cdot y = \alpha \}$$

^aWhere $\psi_A(y,x)$ and $\psi_B(y,x)$ are both Δ_0^0 -formulas.

Proof of Theorem 2.1:

We consider the non-recursive set obtained at the end of the proof of Lemma 2.4

$$S = \{ n \in \mathbb{N} \mid \mathcal{M} \models \exists y < e \ \psi_A(y, n) \}$$
$$= \{ n \in \mathbb{N} \mid \mathcal{M} \models \exists y \ \Pi(n) \cdot y = \alpha \}.$$

We are going to show that if $+^{\mathcal{M}}$ is recursive, then S is recursive too which will be a contradiction.

For this purpose, we describe a deciding procedure for membership in S.

For each $n \in \mathbb{N}$, we have

$$\mathcal{P}eano \vdash_{c} \forall y \; \Pi\left(n\right) \cdot y = \underbrace{y + y + \ldots + y}_{\prod\left(n\right) \; times},$$

and also

$$\mathcal{P}eano \vdash_{c} \forall x \, \forall y \, \left(y \neq \mathbf{0} \longrightarrow \exists d \, \exists r < y \, x = (y \cdot d) + r \right)$$

So, in \mathcal{M} , for each element α we have:

$$\mathcal{M} \models \Pi(n) \cdot \alpha = \underbrace{\alpha + \alpha + \ldots + \alpha}_{\Pi(n) \text{ times}},$$

and for each non-zero element β :

$$\mathcal{M} \models \exists d \, \exists r < y \ \alpha = (\beta \cdot d) + r$$

i.e., there are unique α elements, a divisor γ and remainder $\delta < \beta$, such that $\alpha = (\beta \cdot^{\mathcal{M}} \gamma) +^{\mathcal{M}} \delta$. So, given any non-zero $\alpha \in |\mathcal{M}|$, any $n \in \mathbb{N}$, there exists some unique and any element $\beta \in |\mathcal{M}|$, the model \mathcal{M} satisfies the following disjunction:

$$\alpha = \underbrace{\beta + \beta + \ldots + \beta}_{\Pi(n)} \vee \alpha = \underbrace{\beta + \beta + \ldots + \beta}_{\Pi(n)} + \underbrace{1 + \ldots + 1}_{\Pi(n)} \cdot \underbrace{\Pi(n)}_{\Pi(n)-1}$$

If we assume that $+^{\mathcal{M}}$ is recursive, then given any $\beta \in |\mathcal{M}|$ and any $k < \Pi(n)$, whether $\alpha = \underbrace{\beta + \beta + \ldots + \beta}_{k} + \underbrace{1 + \ldots + 1}_{k}$ or not can be decided. So, by successively looking at all possible

 β (remember that since the domain of \mathcal{M} is countable, it can be ordered as $\langle \beta_i / i \in \mathbb{N} \rangle$), one will end up with a solution of the form:

$$\circ \ \ \textit{either} \ \alpha = \underbrace{\beta + \beta + \ldots + \beta}_{\prod (n)} \ \textit{in which case we have} \ n \in S,$$

$$\circ \ or \ \alpha = \underbrace{\beta + \beta + \ldots + \beta}_{\prod (n)} + \underbrace{1 + \ldots + 1}_{k} \ for \ some \ 0 < k < \prod (n) \ in \ which \ case \ we \ have \ n \notin S.$$

This provides us with a decision procedure for membership in S, hence S is recursive, a contradiction.

^aBecause *Peano* proves that the divisor and the remainder of the Euclidean division are both unique.

7.3 Gödel's 1st Incompleteness Theorem is Provable in RCA₀

Second order arithmetic is not a theory of second order logic, but rather a two-sorted first order theory. This means that in the language there are two different sorts of variables and terms: the numeric terms and the set terms. With respect to the semantic, the numeric variables and the set variables range on different sets of objects: numeric variables vary over integers (whether there are standard or non-standard); whereas set variables vary on sets of integers.

Definition 3.1: The language of second order arithmetic

The language of second order arithmetic \mathcal{L}_{A^2} is a two-sorted language: there are two kinds of terms.

numeric terms

- \circ x_0, x_1, \ldots are countably numeric variables that are numeric terms,
- o 0 is a numeric term,
- \circ if t, s are numeric terms, then the following are numeric terms

 \bullet St \bullet t+s \bullet $t\cdot s$

set terms

 $\circ X_0, X_1, \ldots$ are countably set variables that are set terms,

Definition 3.2: The formulas of second order arithmetic

• The atomic formulas are of the form

• t = s

for t, s any numeric terms and X any set term^a.

 \circ If φ, ψ are formulas, and x is a numeric variable and X is a set variable, then the following are formulas:

• atomic formulas • $(\varphi \wedge \psi)$

• $(\varphi \longleftrightarrow \psi)$

• $\forall x \varphi$

• $(\varphi \vee \psi)$

• $(\varphi \longrightarrow \psi)$

∃xφ
 ∃Xφ

• $\forall X\varphi$

Definition 3.3: Semantic of second order arithmetic

An \mathcal{L}_{A^2} -structure is of the form

$$\mathcal{M} = \langle M_1, M_2, \mathbf{0}^{\mathcal{M}}, \mathbf{S}^{\mathcal{M}}, +^{\mathcal{M}}, \cdot^{\mathcal{M}} \rangle$$

such that

- \circ M_1 is a non empty set,
- $\circ M_2 \subseteq \mathcal{P}(M_1)$ is a non empty set (in case of full second order arithmetic one has exactly $\mathcal{P}(M_1) = M_2$)
- $\circ \ \mathbf{0}^{\mathcal{M}} \in M_1$
- $\circ S^{\mathcal{M}}: M_1 \to M_1$
- \circ + $^{\mathcal{M}}: M_1 \times M_1 \to M_1$
- $\circ : \mathcal{M} : M_1 \times M_1 \to M_1$

Given any \mathcal{L}_{A^2} -formula φ and any \mathcal{L}_{A^2} -structure \mathcal{M} as above, the definition of the satisfaction relation $\mathcal{M} \models \varphi$ is as usual for first order logic, except that numeric variables vary over M_1 while set variables vary over M_2 .

In terms of the evaluation game $\mathbb{EV}(\mathcal{M}, \varphi)$, the rules become:

^aNecessarily some set variable.

if φ is	who plays	the game goes on with
atomic formula	no one	the game ends
$\exists x \psi$	Verifier picks some $a \in M_1$	$\psi_{[a/x]}$
$\forall x \psi$	Falsifier picks some $a \in M_1$	$\psi_{[a/x]}$
$\exists X \ \psi$	Verifier picks some $S \in M_2$	$\psi_{[S/X]}$
$\forall X \psi$	Falsifier picks some $S \in M_2$	$\psi_{[S/X]}$
$(\varphi_1\vee\varphi_2)$	Verifier chooses φ_1 or φ_2	the chosen subformula
$(\varphi_1 \wedge \varphi_2)$	Falsifier chooses φ_1 or φ_2	the chosen subformula
$\neg \psi$	Verifier and Falsifier switch roles	ψ

Except for the distinction between the two different sorts of variables, proofs in second order arithmetic behave as in first order logic.

Definition 3.4: \mathbb{Z}_2 : the theory of full second order arithmetic

The Theory $\mathbf{Z_2}$ of full second order arithmetic is composed of the following axioms:

- \circ $\mathcal{R}ob$.
- The second order induction scheme: for every formula $\varphi(x,X)$ where x and X may occur freely,

$$\forall X \Big(\big(\varphi(\mathbf{0}/x, X) \land \forall x (\varphi(x, X) \longrightarrow \varphi(\mathbf{S}x/x, X)) \big) \longrightarrow \forall x \ \varphi(x, X) \Big)$$

• The comprehension scheme: for every formula $\varphi(x)$ where other variables may occur freely, but not the variable X

$$\exists X \forall x \ (x \in X \longleftrightarrow \varphi(x)).$$

Most proofs that one encounters in Analysis can be conducted within $\mathbf{Z_2} + \mathbf{DC}$ where \mathbf{DC} (Dependent Choice) is a weak form of the \mathbf{AC} (Axiom of Choice). The proof of Gödel's 1st incompleteness theorem only requires a fragment of $\mathbf{Z_2}$ – i.e., a theory whose axioms are all theorems of $\mathbf{Z_2}$ – known as $\mathbf{RCA_0}$.

Definition 3.5: The theory RCA₀

The Theory RCA_0 is a fragment of the full second order theory of arithmetic composed of the following axioms:

- $\circ \mathcal{R}ob. + I\Sigma_1^0$
- o The second order induction axiom

$$\forall X \Big(\big(\mathbf{0} \in X \land \forall x (x \in X \longrightarrow \mathbf{S}x \in X) \big) \longrightarrow \forall x \ x \in X \Big)$$

• The (recursive) comprehension scheme for " Δ_1^0 formulas": given any Σ_1^0 -formula $\varphi_{\Sigma_1^0}(x)$ and any Π_1^0 -formula $\varphi_{\Pi_1^0}(x)$

$$\bigg(\forall x \big(\varphi_{\Sigma_{\mathbf{i}}^{\mathbf{0}}}(x) \longleftrightarrow \varphi_{\Pi_{\mathbf{i}}^{\mathbf{0}}}(x)\big) \longrightarrow \exists X \forall x \ \big(x \in X \longleftrightarrow \varphi_{\Sigma_{\mathbf{i}}^{\mathbf{0}}}(x)\big)\bigg).$$

The name $\mathbf{RCA_0}$ stands for "Recursive Comprehension Axiom for Δ_0^0 -formulas" because all the sets of integers that $\mathbf{RCA_0}$ proves to exist are recursive.

In other words, RCA_0 is too weak to prove the existence of non-recursive sets.

Proposition 3.1

Gödel's 1^{st} incompleteness theorem is provable inside RCA_0 .

7.4 Presburger Arithmetic

Gödel's 1st incompleteness Theorem implies that the complete $\mathcal{L}_{\mathcal{A}}$ -theory of the standard model $\langle \mathbb{N}, 0, S, +, \cdot \rangle$ is undecidable.

If we consider the first order language whose signature is $\mathcal{L}'_{\mathcal{A}} = \{0, 1, +, \cdot, <\}$, it follows from Gödel's 1st incompleteness Theorem, that the complete $\mathcal{L}'_{\mathcal{A}}$ -theory of the standard model $\langle \mathbb{N}, 0, 1, +, \cdot, < \rangle$ is also undecidable.

But if we remove the multiplication function symbol \cdot from the language, then the complete theory of the standard model $(\mathbb{N}, 0, 1, +, <)$ becomes decidable.

¹Where $\mathcal{L}_{\mathcal{A}} = \{0, S, +, \cdot\}.$

Definition 4.1: Presburger Arithmetic

Let $\mathcal{L} = \{0, 1, +, <\}$, where 0, 1 are constant symbols, + is a binary function symbol, and < is a binary relation symbol.

Presburger Arithmetic (Presb.) is the complete \mathcal{L} -theory of the structure $\langle \mathbb{Z}, 0, 1, +, < \rangle$. i.e.,

 $\mathcal{P}resb. = \{ \varphi \ closed \ \mathcal{L}\text{-}formula \ | \ \mathbb{Z} \models \varphi \}.$

Theorem 4.1

Presburger Arithmetic is decidable.

i.e.,

The complete theory of the structure $(\mathbb{Z}, 0, 1, +, <)$ is decidable.

The original proof of this result — due to Presburger himself — relies on the method of quantifier elimination which provides an algorithm that transforms any given formula into some quantifier free equivalent formula from which is then easy to decide [45], [2].

An other approach — due to the Swiss mathematician Julius Richard Büchi — to deciding Presburger arithmetic consists in constructing a finite-state automaton whose language mirror all satisfying assignments of a given formula [5].

Adding multiplication to Presburger Arithmetic makes it undecidable as was shown by Alonzo Church [7].

Theorem 4.2

The complete theory of the structure $\langle \mathbb{Z}, 0, 1, +, \cdot, < \rangle$ is undecidable.

As an immediate consequence we also have :

Corollary 4.1

The complete theory of the structure $(\mathbb{Z}, 0, 1, +, \cdot)$ is undecidable.

7.5 Real Closed Fields

Definition 5.1: Real Closed Fields

Let $\mathcal{L}_{ref} = \{0, 1, +, \cdot, <\}$, where 0, 1 are constant symbols, $+, \cdot$ are a binary function symbols, and < is a binary relation symbol. Let $\mathcal{R} = \langle |\mathcal{R}|, 0, 1, +, \cdot, < \rangle$ be any \mathcal{L}_{ref} -structure.

R is a real closed field if

 $\langle |\mathcal{R}|, 0, 1, +, \cdot, < \rangle$ is elementary equivalent to $\langle \mathbb{R}, 0, 1, +, \cdot, < \rangle$.

We recall that two structures are elementary equivalent if they satisfy the same closed formulas. So, \mathcal{R} is a real closed field if the complete \mathcal{L}_{ref} -theories of \mathcal{R} and \mathbb{R} are exactly the same.

One can also define real closed fields in some other ways. For instance, by saying that a real closed field is any \mathcal{L}_{ref} -structure $\mathcal{R} = \langle M, 0, 1, +, \cdot, < \rangle$ that satisfies both

(1) the field axioms:

```
\circ \forall x \forall y \forall z \ (x+y)+z = x+(y+z)
                                                                                                      (associativity of addition)
\circ \ \forall x \, \forall y \, \forall z \, (x \cdot y) \cdot z = x \cdot (y \cdot z)
                                                                                             (associativity of multiplication)
\circ \ \forall x \ \forall y \ x + y = x + y
                                                                                                   (commutativity of addition)
\circ \ \forall x \ \forall y \ x \cdot y = x \cdot y
                                                                                         (commutativity of multiplication)
\circ \ \forall x \ x + 0 = x
                                                                                                                   (additive identity)
\circ \ \forall x \ x \cdot 1 = x
                                                                                                          (multiplicative identity)
\circ \ \forall x \exists y \ x+y=0
                                                                                                                  (additive inverses)
\circ \ \forall x \neq 0 \ \exists y \ x \cdot y = 1
                                                                                                         (multiplicative inverses)
\circ \ \forall x \, \forall y \, \forall z \, x \cdot (y+z) = (x \cdot y) + (x \cdot z)
                                                                    (distributivity of multiplication over addition)
```

- (2) and any of the following equivalent conditions:
 - $\circ \mathcal{R}$ is not algebraically closed, but its algebraic closure is a finite extension.
 - $\circ \mathcal{R}$ is not algebraically closed but the field extension $\mathcal{R}(\sqrt{-1})$ is algebraically closed.
 - \circ $<^{\mathcal{R}}$ is a total order on $|\mathcal{R}|$ making it an ordered field such that, in this ordering, every positive element of \mathcal{R} has a square root in \mathcal{R} and any polynomial of odd degree with coefficients in \mathcal{R} has at least one root in \mathcal{R} .

Theorem 5.1

Let $\mathcal{L}_{ref} = \{0, 1, +, \cdot, <\}$ and $\mathcal{R} = \langle |\mathcal{R}|, 0, 1, +, \cdot, < \rangle$ be any real closed field.

The complete theory of R is decidable.

Alfred Tarski proved this important result by means of quantifier elimination methods [58].

This result is of course equivalent to the following one:

Theorem 5.2

Let $\mathcal{L}_{rcf} = \{0, 1, +, \cdot, <\}.$

The complete theory of $(\mathbb{R}, 0, 1, +, \cdot, <)$ is decidable.

An immediate consequence of Church's undecidability of the complete theory of the structure $(\mathbb{Z}, 0, 1, +, \cdot, <)$ (Theorem 4.2) is the following:

Corollary 5.1

Let $\mathcal{L}_{ref} = \{0, 1, +, \cdot, <\}$ and $\mathbb{R} = \langle \mathbb{R}, 0, 1, +, \cdot, < \rangle$.

 \circ There is no \mathcal{L}_{rcf} -formula $\varphi_{\mathbb{Z}}(x)$ such that for all real a,

$$\mathbb{R} \models \varphi_{\mathbb{Z}}(a) \iff a \in \mathbb{Z}.$$

 \circ There is no \mathcal{L}_{rcf} -formula $\varphi_{\mathbb{N}}(x)$ such that for all real n,

$$\mathbb{R} \models \varphi_{\mathbb{N}}(n) \iff n \in \mathbb{N}.$$

Definition 5.2: Relativization

Let C be any class characterized by some formula $\varphi_{C}(x)$. Given any formula θ , the formula $(\theta)^{\mathbf{C}}$ is defined by induction on on the height of the formula θ by:

$$\circ \left(\exists x \, \psi\right)^{\mathbf{C}} := \exists x \Big(\varphi_{\mathbf{C}}(x) \land (\psi)^{\mathbf{C}}\Big) \qquad \circ \left(\psi_0 \land \psi_1\right)^{\mathbf{C}} := (\psi_0)^{\mathbf{C}} \land (\psi_1)^{\mathbf{C}}$$

$$\circ (\psi_0 \wedge \psi_1)^{\mathbf{C}} := (\psi_0)^{\mathbf{C}} \wedge (\psi_1)^{\mathbf{C}}$$

$$\circ (\forall x \, \psi)^{\mathbf{C}} := \forall x \Big(\varphi_{\mathbf{C}}(x) \longrightarrow (\psi)^{\mathbf{C}} \Big) \qquad \circ (\psi_0 \vee \psi_1)^{\mathbf{C}} := (\psi_0)^{\mathbf{C}} \vee (\psi_1)^{\mathbf{C}}$$

$$\circ (\psi_0 \vee \psi_1)^{\mathbf{C}} := (\psi_0)^{\mathbf{C}} \vee (\psi_1)^{\mathbf{C}}$$

$$\circ (t = t')^{\mathbf{C}} := t = t'$$

$$(\psi_0 \to \psi_1)^{\mathbf{C}} := (\psi_0)^{\mathbf{C}} \to (\psi_1)^{\mathbf{C}}$$

$$\circ (\neg \psi)^{\mathbf{C}} := \neg (\psi)^{\mathbf{C}}$$

$$\circ (\psi_0 \leftrightarrow \psi_1)^{\mathbf{C}} := (\psi_0)^{\mathbf{C}} \leftrightarrow (\psi_1)^{\mathbf{C}}$$

Proof of Corollary 5.1:

 \circ Assume there exists some formula $\varphi_{\mathbb{Z}}(x)$ such that for all real a,

$$\mathbb{R} \models \varphi_{\mathbb{Z}}(a) \iff a \in \mathbb{Z},$$

then we could use $\varphi_{\mathbb{Z}}(x)$ to relativize every formula to \mathbb{Z} , so that we would have for any formula ψ :

$$\mathbb{Z} \models \psi \iff \mathbb{R} \models (\psi)^{\mathbb{Z}}.$$

So the complete theory of the structure $(\mathbb{Z}, 0, 1, +, \cdot, <)$ would be decidable, contradicting Theorem 4.2

 \circ Assume there exists some formula $\varphi_{\mathbb{N}}(x)$ such that for all real a,

$$\mathbb{R} \models \varphi_{\mathbb{N}}(a) \iff a \in \mathbb{Z},$$

then we could use $\varphi_{\mathbb{N}}(x)$ to relativize every formula to \mathbb{N} , so that we would have for any formula ψ :

$$\mathbb{N} \models \psi \iff \mathbb{R} \models (\psi)^{\mathbb{N}}.$$

So the complete theory of the structure $(\mathbb{N}, 0, 1, +, \cdot, <)$ would be decidable, contradicting Theorem 4.2

7.6 Hilbert's 10th Problem

Hilbert's 10th problem is the tenth of a list of 23 problems that David Hilbert posed in 1900.

The original formulation of Hilbert's 10th problem was:

"Given a Diophantine equation with any number of unknown quantities and with rational integral numerical coefficients: to devise a process according to which it can be determined in a finite number of operations whether the equation is solvable in rational integers."

A Diophantine equation is a polynomial equation with natural coefficients (in \mathbb{Z}) and usually several unknowns, such that the only solutions of interest are the integer ones (those where all unknowns take values inside \mathbb{N}).

The modern formulation of Hilbert's 10th problem is whether one can decide if one or more solutions exist given some Diophantine equation. In other words, does there exist an algorithm to check whether any given Diophantine equation has a solution.

Hilbert's 10th problem remained open for 70 years and was solved in 1970 [38, 46, 16, 19]. It received a negative answer known as Matiyasevich's theorem or the MRDP theorem (Yuri Matiyasevich, Julia Robinson, Martin Davis, Hilary Putnam).

Given a diophantine equation of the form $P(y_1, \ldots, y_n, x_1, \ldots, x_k) = 0$, one distinguishes, among the variables $x_1, \ldots, x_k, y_1, \ldots, y_n$, between

- \circ the unknowns x_1, \ldots, x_k , and
- \circ the parameters y_1, \ldots, y_n .

Definition 6.1: Diophantine set

A Diophantine set S is any subset $S \subseteq \mathbb{N}^n$ (any $n \in \mathbb{N}$) such that there exists some Diophantine equation $P(y_1, \ldots, y_n, x_1, \ldots, x_k) = 0$ that satisfies:

$$\forall y_1 \in \mathbb{N} \dots \forall y_n \in \mathbb{N} \left((y_1, \dots, y_n) \in S \iff \exists x_1 \in \mathbb{N} \dots \exists x_k \in \mathbb{N} \ P(y_1, \dots, y_n, x_1, \dots, x_k) = 0 \right)$$

Matiyasevich-Robinson-Davis-Putnam Theorem 6.1

Given any integer n and $S \subseteq \mathbb{N}^n$,

S is a Diophantine set \iff S is recursively enumerable.

For a complete proof of the Matiyasevich-Robinson-Davis-Putnam Theorem, see Matiyasevich's book: Hilbert's tenth problem [39].